Bio-based smart packaging for enhanced preservation of food quality.

BIOSMART FOOD PACKAGING

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement nº 745762

BIOSMART PROJECT

BRUSSELS | 6-7/12/2017

The Packaging Challenges

Key Performance Topic	Requirements	Specifics
Food quality	 Enhance sensory properties Food grade approved antimicrobials 	 Smell, Color, Avoid unwanted micro-organism growth (bacteria, fungi, yeasts) – additional pasteurization and sterilization is possible but adds cost
Manufacturing	 Simple, economic packaging processing Filling compatibility 	 Adequate properties (sensory, mechanical, barrier) Durability (scratch, ageing, abrasion, impact, tribobioageing) Compatibility with existing machines, run-ability, dimensional stability, sealing- ability.
Logistical	Ease transportation	Conform requirements of bulk packaging & coding
Marketing	Point of sale appealConsumer comfort	• Aesthetically pleasant, conform to customer appeal, easy handling and functionality
Environmental	 Human safety ensured Minimize resource's use Facilitate waste management 	 Food contact safety, not causing physical harm Biodegradability, non-eco-toxic Positive LCA (low carbon foot print) Recoverable, re-processable, compostable
Legislative	• EU and National laws	Meet all criteria
Financial	Cost effective	Acceptable price in relation to consumer value

The Funtionality Needs

Active and smart functionality needs for food packages in relation to the value creating potential

The food waste reduction needs

Annual food waste by region (kg/person)

Multiple studies by various organizations (e.g. Natural Resources Defence Council, NRDC) indicate that society is wasting up to 40% of the produced food...

The Market size

Representative example of the **processed food market** consisting of more than **46 billion retail units** representing **3.1 million tonnes** of plastics use in 2014 (http://www.crugroup.com)

Global production capacity of "bioplastics" by market segments (showing importance of rigid and flexible packaging). Data (2014, **1,7MT)** are projected forward with a significant growth capacity (<u>http://bio-based.eu</u>)

The Concept

The structure

The Project partners & roles

N٥	Name	Acronym	Country	Role
10 8 6	WIPAK PROPAGROUP ITENE	WIP PRO ITENE	DE IT ES	Packaging developers: Flexible Films (WIPAK, Propagroup), rigid packaging (Propagroup, WIPAK, GEA), Paper (WIPAK, ITENE)
5 6	Haute Ecole Suisse ITENE	FRI ITE	CH ES	Biobased polymers composites developers
4	Univ. Lille, Lipofabrik Univ. Reading	LILLE LIPFK UoR	FR FR UK	Antimicrobial and Antioxidant peptides and lipopeptides developers. Food grade approval tests. Freshness test to evaluate food durability.
1 6 5	IK4-TEKNIKER ITENE Haute Ecole Suisse	ITE	ES ES CH	Developers of antimicrobial films by texturing and packaging with thermoregulation properties, biobased barrier properties (O_2 , CO_2 , H_2O) by copolymers, solgel and plasma fixation of lipopeptides. Testing, mechanical, optical (printability), durability and haptical (feel and handling ease properties)
7	RISE (INNVENTIA, SP)	INN	SE	Define possible scenarios to develop and use the optical active and funcional packages, consumer acceptance, food sensory analysis, recyclability vs compostability.
8 11	TECS GEA	TECS	AT	Development of active sensors with O ₂ , CO ₂ and amines detection and integration
1 4	IK4-TEKNIKER Haute Ecole Suisse	TEK FRI	ES CH	Coordination. Assess the environmental and cost acceptability of the added functionality in comparison to current solutions

The Interest Group

Company/	Expertise and Role in the Interest Group		
Function/Country			
Eroski/	Consumer perspective, logistic, dissemination. Requirements and		
Retailer (ES)	definition of the case studies. Monitoring of project results,		
	Food provision & Validation tests.		
Natureworks	Assuring communication flow with converters to facilitate market		
/PLA supplier/ (IT)	transfer providing documentation and technical assistance		
General Mills (ES)	Food packaging Brandowner of different trademarks		
Unilever/Brand Owner (UK)	Food packaging Brandowner of different trademarks		

The Objectives

- Development and scale up (TRL3-5) of active and smart functional bio-based (non-fossil fuel) packages:
 - Multi-layer films with bio-based barrier coatings based on segmented block copolymers and PLA nanoclays (reduced O₂, CO₂, H₂O permeability), as alternatives for aluminium, glass, polyvinylalcohol and polyamides barriers.
 - Superhydrophobic and antimicrobial flexible surface nano-micro topographies through physical embossing and/or sol-gel technologies.
 - Nano-bio-based active micro-encapsulation for thermoregulation.
 - Bio-based antioxidant, antifungal and antimicrobial systems based on lipopeptides & food derived peptides
 - Food quality sensors detection of gases(O₂, CO₂, NH_x) imprinted in the packages to monitor food shell life status
- To improve mechanical properties of the PLA, developing nanoclay composites and copolymers analyzing tribobioageing.
- Implementation of a single or multiple active and smart technologies into 3 food package demonstrators at acceptable costs
- Reduce the **environmental impact of the value chain** through novel material selection, package designs, recycling methodologies, **extended shelf life** and **controlled product quality**.
- Develop bio-based materials and a **functionality selector App(lication)** for defining an all-bio-based active and smart packaging solutions in relation to the performance and commercial needs.

Approach

Pre-processed food	Fresh food					
Ingredients: Food Approval						
Material Testing: Easy to recycle	Material Testing: Compostability					
Functionality testing: antimicrobial properties, Barrier properties, sense	ors, Migration tests					
Package Testing: improved antimicrobial and barrier properties of	Package Testing: increase mechanical performance of actual					
biobased easy to recycle solutions & migration tests	compostable package solutions. Packaging Food Approval					
Preprocessed Food Testing: sensory analysis, food freshness	Fresh Food Testing: sensory analysis, food freshness (biochemical and					
(biochemical & microbiology tests), sensors applied to ham, tomato	microbiology tests), sensors, applied to fish					
Environmental and cost in	mpact: LCA , App Biosmart					
Packaging: Rigid (thermoformed, injected) and flexible films	Packaging: Rigid (cellulose bags) and Flexible (films)					
Outcome: Increase the food shelf life measuring the food freshness,	Outcome: To increase fresh food shelf life :, gas monitoring (CO ₂ , O ₂ ,					
sensory analysis.	NHx), food freshness, sensory analysis.					
Converters: Wipak, PRO - Access to the market						
Brand owners: Unilever, GENERAL MILLS, Eroski- Application driven ma	rket introduction					
Eroski Retailer, validating food testing, Consumer demand						
Impact on retailer, consumer & society: to avoid food waste, increasing	; food shelf life, due date, and reduce waste					
Consumer Acceptance tests : psychological aspects from consumer pers	pective					
Impact to the consumer: The consumer is pleased with better food qua	lity, freshness, sensory test, sensors					
Impact for recycling: BioPEF is easy to recycle, similar to current PET. For	the short term an acceptable alternative together with actual PET and PP					
without the need for organizing a separate collection system.						
Impact for composting: PLA, PLA composites and Block copolymers are c	ompostable					

The Implementation

The BIOSMART Surfaces (WP2)

1.- Biobased composite ✓ PLA/Polyamide block copolymers and PLA Nanoclays with barrier properties

- 2.- Textured surface ✓R2R transferred Surface topography with antimicrobial properties
- 3.-Coating
 ✓ Solgel
 Superhydrophobic &
 UV protection barrier coating
- 4.-Coating
 ✓ Plasma assisted
 peptides
 (functionalization with antimicrobial properties)

5.-Printed sensors
 ✓ Plasma assisted
 peptides
 functionalization with
 antimicrobial properties

The SMART BIOchemistry (WP3)

 A.- Peptides & Lipopetides
 ✓ With antimicrobial and antioxidant properties produced by enzymatic hydrolysis or fermentation

B.- Encapsulation of
biobased (vegetale oils)
acting as phase change
materials
✓ For thermal regulation

C.- Biobased masterbatches ✓High durability masterbatches solutions

Composites

Blends, coatings

The BIOSMART Testing (WP4)

The BIOSMART Packaging (WP5)

Films
 ✓Blown film line
 ✓Blow extruder

2.- Trays

✓Thermoformed

4.- Printing sensor spots O_2 , CO_2 , volátil amines

PROPAGROUP, WIPAK PROPAGROUP, HAUTE Suisse PROPAGROUP, ITENE

TECSENSE, GEA

The BIOSMART Packaging Testing (WP6)

The ECOBIOSMART Approach (WP7)

1.- The recycling strategy
Based on:
✓ biodegradability,
✓ ecotoxicity

3.- Compostability
✓ Biodegradability
✓ Water leaching
biodegradability
✓ Organic recycling
✓ Recycling of
cellulose fibers

UNE-EN 13432 ISO 18606:2013 DIN-Certco and Vinçotte accredited ISO 14851, ISO 14852 OECD301F

CARBON FOOTPRINT FOR KRAFT PAPER The later at the second s

The finite sense of famil CQL are define the analysis of 1000 kg of financian oversity and announces the constraint of the finite pages and in the appear accise instances with the constraint of the finite page and in the appear accise 174 general. The accised finite set the accised balance of the appear in the finite inter-constraint accised.

1 % Decid entation
 1 % Decid entation
 1 % Decident Review
 1 % Production of purchased to
 4 % Production of purchased
 1 % Production of purchased
 1 % Production of entitle entation
 1 % An and a components
 4 % % Production of feature process

RISE-INNVENTIA-SP

IK4-TEKNIKER; RISE

Bio-Based Innovation

20 – 65 µm Functional Bio-

hased

50-70 µm Functional Bio-Based

film or foil

Laminated

The BIOSMART APP (WP8)

Active & Smart - Rigidity & Appeal & Anti-Scratch

Active & Smart – Impact, Toughness, Barrier

Reverse Print Layer

PRESENTLY

Typical multilayer structure **(5-9 layers)** for flexible and rigid food packages. Three prefabricated films laminated together each consisting of multiple layers, with an additional print layer

BIOSMART

Bio-based plastic simplified multilayer structures (2-3 layers) addressing KPI indicators (barrier, stiffness, printability, antimicrobial properties), by means of combinations of polylactic acid (PLA), copolymer polyesters (e.g. PEF), or modified cellulose.

+++

The BIOSMART APP

Fossil-Fuel based	1 sqm film							
Film Structure	Micron	Density(kg/m³)	Euro cts/sqm					
PET	12	1380	2.9	End I	End Users A		etratore	
Print	1	1000	0.0					
PU Adhesive	3	1400	2.1	↓ ↓			¥	
PET	10	1380	2.4	Mobile/Web L	Mobile/Web User Interface Web Use			GUI
PA	12	1140	3.1	D	Report Generation	Data Mngment	Calc. model Mngment	
PU Adhesive	3	1400	2.1	Support				Exposed Functionalities
LDPE	25	923	3.3	Cappon				
rPP	50	905	5.8	Multi-criteria	Environm.	Cost	Properties	Internal
LLDPE	25	915	3.1	routines	routines	routines	routines	Functionalities
Total Tickness	141		Data access laver			Controlled access		
Conversion cost - 25%			31.0			,		to data
						7		
Bio-Based cellulose								
Hemi-Cellulose	10	1500	5.9	BIOSMART Data Base - material properties - economic factors				
Print	1	1000	0.0					
Bio Glue (cellulose)	3	1500	1.8					
PLA	130	125	11.1					
Total Thickness	144		18.8		- KPI models a	nd values		
Conversion Cost 35%			25.4		- users credent	tials (f app)		
Functional Sensor			1	logs (usage of app)				
Surface Treatment			1					
Active			4					
			32.4					

Comparison of a fossil-fuel based multilayer 140 μ m multilayer film versus a simplified bio-based structure with enhanced active and smart features, standardized for 1 m².

The Impact of the BBI Call

- KPI 1: Creation of new cross-sectorial interconnection in bio-based economy clusters linking to the complete value chain, from bio-based raw material to end-users. The BIOSMART brings together all the value chain stakeholders as partners developing innovative technology and via an External Advisory Board representing key stakeholders affected in product development.
- KPI 2: at least 1 new bio-based value chain based on the innovative products developed. The BIOSMART project sets a strategy for implementing all bio-based packages with additional smart and active functionalities tailored to the targeted performance needs e.g. non-sticky surfaces in combination with O₂, CO₂ and the new volatile amine sensors.
- KPI 5: New bio-based materials. A) The BIOSMART introduces novel bio-based lipopeptide and peptide additives with anti-microbial, anti-fungal and/or anti-oxidant properties to increment food shelf life. B) New as well barrier coatings (plasma, sol-gel coatings and resin and composites) with enhanced O₂, CO₂, water and UV barrier properties. C) Bio-based bulk materials, the initial focus is on commercially available bio-based plastics but PLA will be also reinforced with nanoclays to improve mechanical properties and also will be explored aliphatics segmented polyester-co-amides as workable alternatives and scaled up to enable prototype package developments.
- KPI 6: New demonstrated consumer products based on bio-based chemicals and materials. The BIOSMART project focuses on 3 types of packages (flexible/rigid plastic and cardboard) addressing consumer needs including reduced residual in-package food waste, and improved due date indicator for shelf-life extension and simplified all compostable and/or recyclable package designs. All are new concepts with strong emphasis on consumer convenience and overall value chain value creation.

THANK YOU

Cor BIOMATERIALS FOR SMART FOOD PACKAGING

Contact: Technical Coordinator, Amaya Igartua

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 745762

IK4-TEKNIKER

E-mail: <u>amaya.igartua@tekniker.es</u> Tel: +34 680 656 085